Well, 26,000 terrestrial years relates to:
The precession of the equinoxes takes about 25,770 years to complete a cycle. Polaris' mean position (taking account of precession and proper motion) will reach a maximum declination of +89°32'23", which translates to 1657" (or 0.4603°) from the celestial north pole, in February 2102. Its maximum apparent declination (taking account of nutation and aberration) will be +89°32'50.62", which is 1629" (or 0.4526°) from the celestial north pole, on 24 March 2100.
Precession will next point the north celestial pole at stars in the northern constellation Cepheus. The pole will drift to space equidistant between Polaris and Gamma Cephei ("Errai") by 3000 AD, with Errai reaching its closest alignment with the northern celestial pole around 4200 AD. Iota Cephei and Beta Cephei will stand on either side of the northern celestial pole some time around 5200 AD, before moving to closer alignment with the brighter star Alpha Cephei ("Alderamin") around 7500 AD.
Precession will then point the north celestial pole at stars in the northern constellation Cygnus. Bright first-magnitude Deneb will be within 7° of the North Pole in 10,000 AD, and third-magnitude Delta Cygni will be a pole star around 11,500 AD. Precession will then point the north celestial pole nearer the constellation Lyra, where the second brightest star in the northern celestial hemisphere, Vega, will be a pole star around 13,700 AD.
Precession will eventually point the north celestial pole nearer the stars in the constellation Hercules, pointing towards Tau Herculis around 18,400 AD. The celestial pole will then return to the stars in constellation Draco (Thuban, mentioned above) before returning to the current constellation, Ursa Minor. When Polaris becomes the North Star again around 27,800 AD, due to its proper motion it then will be farther away from the pole than it is now, while in 23,600 BC it was closer to the pole.
From
https://en.wikipedia.org/wiki/Pole_star
The 5,200 figure comes from the Mayan calendar, yes, the one used to predict the end of the world on 21 December 2012. I would say that linking the 2 together is tenuous.
As for Sol going round the universe, well, it orbits the centre of the Milky Way every 225,000,000 to 250,000,000 terrestrial years.
http://earthsky.org/astronomy-essential ... y-rotation
As for the centre of the universe, that's possibly moot. Certainly, it seems to depend on your point of view..
There is no centre of the universe! According to the standard theories of cosmology, the universe started with a "Big Bang" about 14 thousand million years ago and has been expanding ever since. Yet there is no centre to the expansion; it is the same everywhere. The Big Bang should not be visualised as an ordinary explosion. The universe is not expanding out from a centre into space; rather, the whole universe is expanding and it is doing so equally at all places, as far as we can tell.
In 1929 Edwin Hubble announced that he had measured the speed of galaxies at different distances from us, and had discovered that the farther they were, the faster they were receding. This might suggest that we are at the centre of the expanding universe, but in fact if the universe is expanding uniformly according to Hubble's law, then it will appear to do so from any vantage point.
If we see a galaxy B receding from us at 10,000 km/s, an alien in galaxy B will see our galaxy A receding from it at 10,000 km/s in the opposite direction. Another galaxy C twice as far away in the same direction as B will be seen by us as receding at 20,000 km/s. The alien will see it receding at 10,000 km/s:
---------A--------------B-------------C
From A---0 km/s---------10,000 km/s---20,000 km/s
From B---10,000 km/s----0 km/s--------10,000 km/s
So from the point of view of the alien at B, everything is expanding away from it, whichever direction it looks in, just the same as it does for us.
http://math.ucr.edu/home/baez/physics/R ... entre.html
Our future is like that of the passengers on a small pleasure boat sailing quietly above the Niagara Falls, not knowing that the engines are about to fail. James Lovelock.